Construction and Evaluation of Rodent-Specific rTMS Coils

نویسندگان

  • Alexander D. Tang
  • Andrea S. Lowe
  • Andrew R. Garrett
  • Robert Woodward
  • William Bennett
  • Alison J. Canty
  • Michael I. Garry
  • Mark R. Hinder
  • Jeffery J. Summers
  • Roman Gersner
  • Alexander Rotenberg
  • Gary Thickbroom
  • Joseph Walton
  • Jennifer Rodger
چکیده

Rodent models of transcranial magnetic stimulation (TMS) play a crucial role in aiding the understanding of the cellular and molecular mechanisms underlying TMS induced plasticity. Rodent-specific TMS have previously been used to deliver focal stimulation at the cost of stimulus intensity (12 mT). Here we describe two novel TMS coils designed to deliver repetitive TMS (rTMS) at greater stimulation intensities whilst maintaining spatial resolution. Two circular coils (8 mm outer diameter) were constructed with either an air or pure iron-core. Peak magnetic field strength for the air and iron-cores were 90 and 120 mT, respectively, with the iron-core coil exhibiting less focality. Coil temperature and magnetic field stability for the two coils undergoing rTMS, were similar at 1 Hz but varied at 10 Hz. Finite element modeling of 10 Hz rTMS with the iron-core in a simplified rat brain model suggests a peak electric field of 85 and 12.7 V/m, within the skull and the brain, respectively. Delivering 10 Hz rTMS to the motor cortex of anaesthetized rats with the iron-core coil significantly increased motor evoked potential amplitudes immediately after stimulation (n = 4). Our results suggest these novel coils generate modest magnetic and electric fields, capable of altering cortical excitability and provide an alternative method to investigate the mechanisms underlying rTMS-induced plasticity in an experimental setting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Neuroprotective Effects of Long-Term Repetitive Transcranial Magnetic Stimulation on the Cortical Spreading Depression-induced Damages in Rat’s Brain

Introduction: Cortical Spreading Depression (CSD) is a propagating wave of neural and glial cell depolarization with important role in several clinical disorders. Repetitive Transcranial Magnetic Stimulation (rTMS) is a potential tool with preventive treatment effects in psychiatric and neuronal disorders. In this paper, we study the effects of rTMS on CSD by using behavioral and histological a...

متن کامل

Economic evaluation of resistant major depressive disorder treat-ment in Iranian population: a comparison between repetitive Transcranial Magnetic Stimulation with electroconvulsive

Background: It is estimated that major depression disorders constitute 8.2% of years lived with disability (YLDs) globally. The repetitive Transcranial Magnetic Stimulation (rTMS) and Electroconvulsive Therapy (ECT) are two relative common interventions to treat major depressive disorders, especially for treatment resistant depression. In this study the cost- effectiveness and cost-utility of r...

متن کامل

Treating Clinical Depression with Repetitive Deep Transcranial Magnetic Stimulation Using the Brainsway H1-coil.

Repetitive transcranial magnetic stimulation (rTMS) is an emerging non-pharmacological approach to treating many brain-based disorders. rTMS uses electromagnetic coils to stimulate areas of the brain non-invasively. Deep transcranial magnetic stimulation (dTMS) with the Brainsway H1-coil system specifically is a type of rTMS indicated for treating patients with major depressive disorder (MDD) w...

متن کامل

A measure of acoustic noise generated from transcranial magnetic stimulation coils.

The intensity of sound emanating from the discharge of magnetic coils used in repetitive transcranial magnetic stimulation (rTMS) can potentially cause acoustic trauma. Per Occupational Safety and Health Administration (OSHA) standards for safety of noise exposure, hearing protection is recommended beyond restricted levels of noise and time limits. We measured the sound pressure levels (SPLs) f...

متن کامل

Safety of rTMS to non-motor cortical areas in healthy participants and patients.

OBJECTIVE rTMS is increasingly being used for stimulation to non-motor areas, but available safety guidelines are derived from experience with motor cortex rTMS. We reviewed the literature and our own data to assess the safety of rTMS to non-motor areas. METHODS We reviewed for adverse effects all articles published from January 1998 to December 2003 that applied rTMS to non-motor areas, and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2016